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MEAN FLOW FIELD AND SURFACE HEATING PRODUCED BY UNEQUAL 

SHOCK INTERACTIONS AT HYPERSONIC SPEEDS 

Stanley F. Birch* and David H. Rudy 
Langley Research Center 

SUMMARY 

Mean velocity profiles were measured in a compressible free shear layer pro- 
duced by the interaction of two unequal strength shock waves at free-s t ream Mach num- 
bers of 6.0 and 6.7. Measurements were made over a unit Reynolds number range of 
3.77 X 106 per meter to 1.74 X lo7 per  meter based on the flow on the high velocity side 
of the shear  layer. The measured spreading parameters  for the flows in this study are 
consistent with the variation with Mach number of the available zero  velocity ratio data 
when the Mach numbers of the present data a r e  taken to be the characterist ic Mach num- 
bers based on the velocity difference ac ross  the mixing layer. The transition Reynolds 
numbers w e r e  found to be as much as a factor of 5 lower than resu l t s  given in the data 
previously regarded as the most reliable for transition in free shear layers. Surface 
measurements in the shear  -layer attachment region of the blunt-body model indicate 
peak local heating and static pressure  consistent with other published data. 
predictions of the shear-layer flow were made using the Prandtl  mixing length model 
with a streamwise effective viscosity factor in the transition region. 

Numerical 

INTRODUCTION 

The high local heating rates caused by shock interactions a t  hypersonic speeds 
have been the subject of numerous experimental and theoretical studies. In 1968 Edney 
(ref. 1) identified six basic types of shock interactions and measured associated local 
heat-transfer rates up to 10 t imes the local unperturbed free-s t ream values. This work 
showed that the severe local heating and high pressures  are caused by the impingement 
of disturbances which emanated from the shock intersections. These disturbances can 
be shear  layers,  supersonic jets, o r  shocks; and the overall  flow can be dominated by 
viscous and/or inviscid effects depending on the interaction geometry. Reference 1 
summarizes  work published before 1968 while details of more recent work are covered 
in references 2 to 6. Most of this work has  been directed toward a better understanding 
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of the overall problem, concentrating on the effects of variations in gross  properties 
such as Mach number, body geometry, impingement angle, and specific heat ratio. 
Limited study w a s  a l so  made of the viscous interactions themselves. 

The present work is a detailed study of the flow field and the associated surface 
heating for the interaction geometry identified as type 111 by Edney. A type 111 inter- 
action resu l t s  when a weak extraneous shock impinges on the bow shock of a blunt body 
inside the sonic line. The type III interaction produces a single shear layer with super- 
sonic flow on one side and subsonic flow on the other side. The high heating r a t e s  occur 
at the point where this shear layer attaches to the adjacent body; the rates depend cr i t i -  
cally on the width of the shear  layer at the attachment point. 

Previous experimental studies of surface heating and pressure in type III inter-  
actions have been made by Edney who used several  types of blunt bodies (ref. 1) and by 
Hains and Keyes who used a hemisphere (refs. 2 and 3). Keyes and Morris  (ref. 4) pre-  
sented correlations of the data from references 2 and 3, showing that the surface heat 
transfer in the attachment region is highly dependent upon whether the shear layer is 
laminar or turbulent. Birch and Keyes (ref. 7) reported measured transition Reynolds 
numbers fo r  the associated shear layers. 

The present work is a study of the viscous mixing processes  which determine the 
width of the shear  layer. Shear-layer mean velocity profiles for several  unit Reynolds 
numbers were experimentally determined in a type 111 interaction. In addition, surface 
oil-flow patterns, surface heat-transfer measurements, and shear-layer transition 
length measurements are presented. 
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SYMBOLS 

speed of sound 

specific heat at constant pressure 

surface heat-transfer coefficient 

shear -layer length to transition point 

Mach number 

characterist ic Mach number, u2 - u3 
"2 

transition Reynolds number, p2u2Q/p2 



P static pressure,  N/m2 

tunnel total pressure,  N/m2 PO 

total pressure in region ahead of pitot probe shock wave, N/m2 Pt, 1 

Pt, 2 total pressure behind pitot probe shock wave = pt,2 if M < I), 
N/m2 

T static temperature, K 

T O  total temperature, K 

U streamwise velocity, m/sec 

X coordinate along surface of model f rom leading edge, cm 

- 
X streamwise coordinate (see fig. 25) 

location of start of transition region 
- 
x T ~ N S  

- 
xTURB 

Y 

location of start of turbulent region 

coordinate normal to region 3 flow from model surface, cm 

- 
Y = Y - Y0.5 

value of y where @ = 0.5 y0.5 

CY angle of inclination of blunt-body model, deg 

P shock generator wedge angle, deg 

streamwise effective viscosity factors yayyb 

6 shear -layer width 

6SL shear  -layer width at attachment 
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*SL shear -layer angle relative to model surface inclination, deg 
u3 1 - -  

- u2 
u3 1 + -  
u2 

-- x 

P dynamic viscosity 

P density 

0 spreading parameter 

u - u2 

u3 - u2 
- - @ 

Subscripts : 

av average value 

peak maximum value 

S surface value 

W conditions based on measured surface temperature and peak surface 
static pressure 

00 

1 

293 

4 

f r ee  -s t ream conditions 

conditions behind generator wedge shock 

conditions on high and low velocity side of shear  layer,  respectively 

conditions in region behind oblique shock at attachment point 

APPARATUS AND TESTS 

Test Facilities 

The experimental investigation was  conducted in the Langley 11 -inch hypersonic 
tunnel and in the Langley 20-inch Mach 6 tunnel. 

The nominal f ree-s t ream Mach number for the 11-inch facility is 6.8. The actual 
Mach number varied with total pressure and running t ime (ref. 8); however, this variation 
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produced no measurable effect on the shear-layer flow in these tests. The nozzle in 
this  facility is two dimensional with a throat size of 0.236 c m  by 27.9 cm with a core  of 
uniform flow of approximately 15.2 c m  by 15.2 c m  in the test section. The usable 
Reynolds number range is from 0.16 X lo7 per meter to 1.31 X 107 per meter with a 
m a s s  flow of 5.44 kg/sec at a total p ressure  of 1.03 MN/m2 and a total temperature 
of 590 K. Qpical run  t imes were 40 seconds. 

The 20-inch Mach 6 tunnel is a blowdown facility described in the appendix of ref- 
erence 9. The test Mach number w a s  obtained with a fixed-geometry, two-dimensional 
contoured nozzle forming a throat section of 0.86 c m  by 50.8 c m  and a test section of 
52.0 c m  by 50.8 cm. The Reynolds number range w a s  2.3 X 106 per  meter to 29.5 X 106 
per  meter with a maximum tunnel mass  flow of 27 kg/sec. Tests w e r e  made in this  
facility to obtain data at higher Reynolds numbers than those attainable in  the l l - inch  
tunnel. To give extended run  t imes,  Le., 5 to 7 minutes in length, the tunnel flow w a s  
exhausted into the atmosphere using a n  annular air injector. 

Models 

The basic geometry used in this study is indicated in the schematic of the flow field 
for  each tunnel shown in figure 1. A wedge set at a small  angle relative to the flow was  
used to generate a weak planar shock wave which interacted with the bow shock of a suit- 
ably placed blunt body. Two different shock generator wedges w e r e  used in combination 
with two different blunt bodies. 

The first set of models (shown in fig. 2) consisted of a 50 shock generator wedge 
15.2 cm wide by 44.4 cm long and a blunt body 6.35 c m  wide by 6.26 cm long with an  
impingement surface angle of 30'. 
of the basic shock-interaction geometry. The resu l t s  of this study indicated that because 
of crossflow on the low velocity side cjf the shear  layer near the surface of the blunt body, 
it w a s  difficult to calculate the positions of the resulting shocks accurately. A second 
set of models was  therefore fabricated to overcome this difficulty. 

This set of models w a s  used for a preliminary study 

This second set of models (shown in figs. 3(a) and 3(b)), which were used to obtain 
most of the detailed data reported here,  had approximately the same dimensions as the 
first set, but the incident angles of both the shock generator wedge and the blunt body were 
adjustable. The models positioned in the test section are shown in figure 4. The blunt 
body, which was  made from stainless steel, w a s  fitted with 31 static-pressure orifices, 
13 of which were located along the model center line 0.635 c m  apar t  as shown in figure 5. 
The remaining 18 pressure  taps were used to measure the off-center-line surface static- 
pressure  field in the shear-layer attachment region. These pressure  orifices were 
formed f rom 0.152-cm stainless steel tubing which was silver-soldered flush with the 
model surface. At the base of the model the tubes were connected to 1.22-m lengths 
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of 0.3175-cm outer diameter tubing; these tubes, in turn, were connected to pressure 
transducers outside the tunnel. A stycast  res in  blunt-body model identical in s ize  and 
shape to the steel model w a s  used for heat-transfer measurements and oil-flow studies. 

P re s su re  Probes 

Static-pressure ~ -- probe.- The design of a suitable static-pressure probe for use in 
supersonic flows presents a number of difficulties resulting from the shock wave which 
forms at the t ip of the probe. For  a standard probe with a cylindrical body and a coni- 
cal  tip, the flow passing over the shoulder expands to below static pressure and recom- 
presses  to t rue static p res su re  further down the probe body. In the standard design the 
static-pressure orifices must be located 15 to 20 probe diameters back from the tip. 
Use of the smallest  practical probe-body diameter would have resulted in a probe length 
too long to be practical for local static-pressure measurements in the present flow field. 
The probe actually used is shown in figure 6. Unpublished tests on a larger  probe of 
similar design indicated that at Mach numbers up to 2.0, the probe generally senses  
pressures  larger than true static; however, e r r o r s  are less than 1 percent when the 
probe axis  is alined with the local flow direction. Effects of probe inclination generally 
serve to reduce the probe-sensed pressure by amounts which vary with both inclination 
and Mach number. In general, static-pressure e r r o r s  associated with the probe itself 
were l e s s  than 2 percent for inclinations up to approximately 1 2 O ,  8 O ,  and 4 O  at Mach 
numbers of 0.6, 1.1, and 2.0, respectively. 

Pitot pressure probes.- The tip of the probe used in the 11-inch tunnel tests w a s  
made f rom 0.153-cm outer diameter stainless steel  tubing flattened to give an opening 
about 0.00508 cm high. The same probe was  used at all data stations. Four probes of 
appropriate length were used in the 20-inch tunnel tests with one probe for each of the 
four data stations. The t ips of these probes were made from 0.1016-cm outer diameter 
thin-wall stainless steel  tubing flattened to give an opening about 0.02032 cm high. 

Test  Conditions 

The 11-inch tunnel data were obtained at nominal tunnel stagnation pressures  po 
of 5 atm and 10 atm (1 atm = 101.325 kN/m2) with an  average stagnation temperature 
of 617 K. The unit Reynolds numbers based on the flow on the high velocity side of the 
shear layer (region 2) were 3.8 X lo6 per meter and 7.5 X lo6 per meter for total p res -  
sures  of 5 and 10 atm, respectively. 

To obtain data on the spreading rate of a shear layer at Reynolds numbers larger  
than were possible in the 11-inch tunnel, two further s e r i e s  of tes t s  were run in the 
20-inch Mach 6 tunnel. The first se r i e s  were run with a nominal tunnel stagnation pres-  
sure  po of 1.03 MN/m2 to provide approximate overlap with the 11-inch results. The 
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average stagnation temperature for these tes t s  w a s  461 K. Therefore, the unit Reynolds 
number based on the flow on the high velocity side of the shear layer (region 2) w a s  
1.74 X 107 per meter. 

The second se r i e s  of tes t s  in the 20-inch tunnel were run at a nominal tunnel stag- 
nation pressure po of 3.45 MN/m2 and at a n  average total stagnation temperature To 
of 489 K. These conditions gave a unit Reynolds number of 4.99 X lo7 per meter;  the 
value is approximately 6.6 t imes higher than the highest value run  in the 11-inch tunnel. 

RESULTS AND DISCUSSION 

Preliminary Schlieren Flow Field Studies 

The type 111 interaction (see ref. 1) described here resul ts  when a weak extraneous 
shock intersects a strong shock. 
the geometry of the interaction shown in figure 1 is uniquely determined by M,, M1, 
and /3 provided that the interaction takes place upstream of the sonic line. The geom- 
etry of the interaction may be calculated using the heart  diagram described in reference 1 
o r  numerically, using the procedure given in reference 10. 
methods were used; each provided essentially the same results. 
geometry is independent of its position, the blunt body may be designed to insure that the 
shock between regions 1 and 2 is straight. Note, however, that because of the subsonic 
flow region between the shock and the blunt body, the angle between the surface' and the 
shock is not that computed for a two-dimensional wedge. In this study the shock was 
nearly parallel to the surface. This was caused primarily by the crossflow in the low 
velocity side of the shear layer. 

The strong shock w a s  the bow shock of a blunt body and 

In the present study both 
Since the interaction 

One of the objectives of the preliminary study w a s  to optimize the geometry to  give 
the maximum length of shear layer with minimum three-dimensional effects. These 
requirements were subject to a total blockage limit for the 11-inch tunnel; this limit 
res t r ic ted the model s izes  which could be used. The arrangement shown in figure 4 
w a s  found to be nearly optimum. If the blunt body is moved further back, the separated 
boundary layer f rom the shock generator wedge interferes with the reattachment region 
of the shear layer. If the blunt body is moved forward, the gap between the models 
decreases,  restricting the flow in this region and increasing the three-dimensional 
effects. Eventually the boundary layer on the shock generator wedge separates,  and 
together with the separation shock impinges on and disrupts the flow in the region of the 
original shock interaction. 
shock interaction w a s  located close to but inside the sonic line on the blunt body. How- 
ever,  the configuration could not be adjusted too finely without unduly complicating the 
experimental study because of small  changes in the interaction geometry with Reynolds 

In order  to maximize the separation of the models, this 
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number. This change was  caused mainly by a decrease in the boundary-layer displace- 
ment thickness on the shock generator wedge with increasing unit Reynolds number; this 
change moved the interaction point far ther  f rom the blunt body. 

The spark  schlieren photographs (figs. "(a) to 7(c)) show some typical resu l t s  f rom 
these preliminary studies. In figure 7(a), the separation distance between the two models 
is too large, allowing the separated boundary layer f rom the shock generator wedge to 
disrupt the flow field of interest. For the configuration shown in figure 7(b), the gap 
between the models and the shock generator wedge angle were both decreased; thus, the 
separated-boundary-layer interference moved further toward the base of the blunt body. 
In figure 7(c), the bases  of the models are alined, eliminating the interference. As  
mentioned previously, however, three-dimensional effects are increased in this 
configuration. 

For the l l - inch (Mm = 6.7) tunnel data tests, the second set of models w a s  used. 
A schematic of the flow field is shown in figure l(a). 
same values for  Ma and Mg in the M, = 6, 20-inch tunnel, the shock generator 
wedge angle w a s  adjusted to 1l0. A sketch of the resulting flow field is shown in 
figure l(b). 

To maintain approximately the 

Figures  8(a) to 8(c) show spark  schlieren photographs from the l l - inch tunnel tests 
for  three unit Reynolds numbers. As  the unit Reynolds number increases,  the region of 
laminar flow in the shear layer decreases.  
the schlieren system knife edge adjusted to indicate better the shear-layer attachment 
which occurs  near the base of the blunt-body model. 

The photograph in  figure 8(d) w a s  taken with 

Figures 8(e) to 8(g) show spark schlieren photographs f rom the Mach 6, 20-inch 
tunnel tests for  three unit Reynolds numbers. Note that some of these schlieren photo- 
graphs show clear  dark and light bands at angles of approximately 4 5 O  with respect  to 
the main flow direction. These bands appear to be s imilar  to some of the photographs 
in reference 11 and suggest a distinct large eddy structure. However, because of the 
large variation observed among photographs in a series of photographs from a given run, 
this large eddy structure appears to be strongly intermittent. 

Attempts were made to reduce three-dimensional effects by fitting side plates to 
the blunt body. It was  found, however, that the resulting increase in blockage separated 
the boundary layer on the shock generator wedge and disrupted the flow field. The extent 
of the remaining three-dimensionality and its possible effect on the flow is discussed in 
more detail later. 

Static -Pressure  Measurements 

Surface static-pressure _ _  measurements. ~- - - Figure 9 shows the variation in  static 
pressure along the center line of the model for several  angles of inclination CY of the 
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model. It was  found that the static pressure  w a s  very sensitive to the relative position 
of the models and some small  differences in the static-pressure distributions were noted 
for  different tests using nominally the same configuration. Figure 10 shows the center- 
line static-pressure distribution at 5 a tm and 10 a tm for the model configuration used 
during the l l - inch tests. Figure 11 shows the surface static-pressure variation in the 
c r o s s  plane normal to the center line at x = 5.21 cm f rom the l l - inch  tests. 
pressure  is constant in the central  region about the center line with a slight symmetrical  
dropoff near the edges of the model. 

The 

Static-pressure .- - profiles. - The static-pressure profiles shown in figure 12 were 
obtained using the static-pressure probe described previously. It can be seen that each 
profile consists of two sets of data: one set taken with the static-pressure probe alined 
with the flow on the high velocity side of the shear layer and the other set taken with the 
probe body parallel to the blunt-body surface. By assuming that the latter data were 
more  accurate on the low velocity side of the shear  layer where the flow on the center 
line is expected to be parallel  to the surface, it w a s  possible to estimate the actual static- 
pressure  profile. The agreement between surface static-pressure measurements and 
those measurements made with the static probe in the subsonic region of the flow seems 
to support this assumption. 

Oil Flow 

The oil-flow pattern on the surface of the blunt body is shown in figure 13. To 
avoid the danger of blocking the static-pressure orifices on the s teel  model, the oil-flow 
patterns were obtained by using the stycast heat-transfer model. Visualization w a s  
accomplished by putting an  i r regular  pattern of oil drops on the model surface. 

The appearance of the oil pattern after a run is shown in figure 13. Two regions 
The oil accumulation on the nose of the model of oil accumulation can be clearly seen. 

is caused by the stagnation of the streamlines coming through the normal bow shock. 
The reason for the second region of oil accumulation, located above the nose on the flat 
portion of the model surface, is less obvious; however, the accumulation is not the resul t  
of the stagnation of streamlines in the boundary layer on the surface. The small  adverse 
static-pressure gradient accelerates  the growth of the boundary layer on the blunt body 
and reduces the axial velocity close to the surface. This gradient, combined with the 
crossflow which resu l t s  f rom the t ransverse static -pressure gradient, leads to increas- 
ing angles between streamlines close to the surface and the center line of the blunt body 
as the attachment point is approached. 
point is still large enough to avoid stagnation or reverse  flow in the boundary layer. 
Downstream of the attachment point, the angles between the s t reamlines  and the blunt- 
body center line again decrease as the velocity of the flow close to the surface increases. 

However, the axial velocity at the attachment 
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The low axial static-pressure gradients observed in the tests described here resul t  
primarily f rom the small  angle between the attaching shear layer and the model surface. 
As this angle increases,  the adverse static-pressure gradient also increases (fig. 9). 
Fo r  flow geometries where the angle between the shear  layer and the surface is large 
(for example, refs. 1 and 3), a region of reverse  flow is generally observed between the 
shear layer and the surface upstream of the attachment point. There is no such reverse  
flow in the flow field used in this study. 

Mean Velocity Profiles 

The mean velocity data were obtained from pitot pressure t raverses  of the mixing 
For  all tes t s  the pitot probe was  approximately alined with the flow on the high layer. 

velocity side of the shear layer. Traverses  were then made at right angles to this 
direction. 

The estimated static-pressure profiles (fig. 12) were  used to obtain velocity data 
f rom the pitot data assuming constant total temperature for the 11-inch center-line pro- 
files at po = 10 atm. In all other cases,  however, it w a s  assumed that the static pres-  
sure in the shear layer equaled the surface value at the particular x station. As 
shown by the resu l t s  given in figure 12, this assumption is reasonable for the low veloc- 
ity region. In the supersonic region the velocity is only slightly affected by small  changes 
in static pressure.  Overall the assumption has a negligible effect on the values of the 
shear-layer spreading rate. 

~ Center-line data, 11-inch - -_ tunnel.- Center-line velocity (u/u2) profiles ahead of the 
attachment region a r e  presented in tables I and 11, are plotted in figure 14, and exhibit 
the usual "error  function" shapes. (Each profile is a composite of several  tunnel runs.) 
Plots of lines of constant @J (fig. 15) indicate that there  is a substantial difference in 
the spreading ra te  for  the two flows. The spreading parameter cr for the 10-atm flow 
w a s  calculated to be 30, while at 5 atm the shear layer appears to be spreading approxi- 
mately 50 percent fas te r ,  although in this case the spreading rate is not strictly linear. 
Hence no cr can be computed for the 5-atm flow. The spreading parameter cr is 
defined as 

1.804(XB - XA) 
c r =  

yB - YA 

where YA and YB a r e  the lateral distances between points for which @J is 0.1 
and 0.9 at longitudinal stations XA and XB, respectively. The numerical constant is 
based on a comparison between the data and the e r r o r  function profile (fig. 3.1 of ref. 12) 
which w a s  found to be the best approximation of the present experimental results. 
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Off-center-line - data, l l - inch  __-- tunnel.- Figure 16 shows profiles for x = 5.21 cm 
at locations 1.27 cm away from the center line on each side. 
files with the center-line profile at the same x location shows that the three profiles 
are almost identical. The data presented in figure 16 are tabulated in table I.U. Each 
of these profiles is a composite of several  tunnel runs. 

ahead of the attachment region for po = 1.03 MN/m2 are presented in table IV and 
plotted in figure 17. A plot of lines of constant @ is given in figure 18. The calcu- 
lated spreading parameter for this flow was  u = 26. Equation (1) w a s  used to com- 
pute u. 

Comparison of these pro- 

Center-line ~- ._ data, 20-inch tunnel. - Normalized center -line velocity (u/u2) profiles 

Normalized center-line velocity profiles for the po = 3.45 MN/m2 runs are plot- 
ted in figure 19 with the tabulated data given in table V. A plot of constant velocity lines 
is given in figure 20. During this high Reynolds number test, the probe designed for the 
x = 4.19 cm station was  irreparably damaged, and the longer probe for  the x = 3.43 cm 
station w a s  used as a substitute. Analysis of the data and of schlieren photographs taken 
during the tests indicated that the probe experienced a deflection under the high aerody- 
namic load while traversing the supersonic region a t  this station; therefore, the probe 
position w a s  altered from the indicated reading. Because of this problem, the data 
obtained at this station, particularly in the supersonic region of the shear layer, a r e  not 
considered to be reliable. Therefore the lines of constant @ in figure 20 a r e  biased 
toward the two downstream stations. The resulting (T again based on the e r r o r  func- 
tion profile w a s  calculated to be 28.0 (using eq. (1)). 

Discussion of mean velocity ~ resul ts .  - To establish a common basis  for comparing 
the present resul ts  with other published data for supersonic shear layers,  the spreading 
r a t e s  calculated from the present data were extrapolated to the values they would have 
in a shear layer with a zero velocity ratio,  i .e.,  ~ 3 / u 2  = 0. This was  accomplished by 
assuming that the variation of (T with velocity ratio established for subsonic flows, 
i.e., OX = constant, where 

u3 1 - -  

u3 1 + -  
u2 

A=- u2 

is applicable to the present results.  Since the observed variation of u with velocity 
ratio in subsonic flows appears to follow from simple relativistic considerations and 
implies no change in the basic turbulent mixing process, this assumed variation appears  
to be reasonable. 
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A s  a first approximation, the lateral  spreading r a t e  of a mixing layer is propor- 
tional to the velocity difference across  the layer (u2 - u3) while the axial convection 
velocity is proportional to the average velocity in the layer (u3 + u2)/2. Therefore, 
the angular spreading rate of the mixing layer is expected to be proportional to the ratio 
of these two quantities. Since their relative magnitudes change with velocity ratio, the 
resulting change in angular spreading ra te  of the mixing layer should be proportional 
to (u2 - ~ 3 ) / ( ~ 2  + u3) if the basic turbulent mixing process does not change as the veloc- 
ity ratio changes. However, since the spreading ra te  in a supersonic shear layer is 
Mach number dependent (paper 2 of ref. 13), it is also necessary to define a character-  
istic Mach number corresponding to that used for shear layers  with zero velocity ratios. 
The velocity difference across  the mixing layer is clearly the characterist ic velocity for 
the flow; therefore, the characterist ic Mach number is defined here  as (u3 - u2)/az 
where a2 is the speed of sound on the high velocity side of the shear layer. Note that 
the static temperature difference across  the present mixing layer is not the same as for 
a zero velocity ra t io  mixing layer with the same nominal Mach number and a constant 
total temperature. This difference, however, is small  here  and can probably be ignored 
without serious e r ro r .  Certainly, for subsonic flows the best available data (ref. 14) 
indicate that density variations, as such, have only a small  effect on the mixing rate.  
In reference 15 it w a s  shown that a variation of f rom 1.0 to 1.3 in total temperature 
ratio across  a Mach 4 mixing layer did not produce a measurable change in the mixing 
rate.  Nevertheless, the available experimental data are very limited and this result  
should not be extrapolated too far. A direct determination of the variation of spreading 
rate  with velocity ratio for supersonic flows would, of course, be preferable, but no such 
data appear to be available at present. 

The OX values at the characterist ic Mach numbers for the present tes t s  a r e  
plotted in figure 21 with data from references 15 to 30 for zero velocity ratio (A = 1) 
shear layers. (Only data at highest Reynolds number a r e  shown for each tunnel.) An 
e r r o r  band of *lo percent is indicated for the present data. The variation in the spread- 
ing ra te  of the mixing layers  with Mach number appears to agree with that recommended 
in paper 2 of reference 13 for fully developed supersonic shear layers.  

The higher spreading ra te  of the low Reynolds number flow (po = 5 atm) is in agree-  
ment with the findings of Morrisette and Birch (see ref. 30) who reported that the spread- 
ing rate of a shear layer in the near field of a Mach 5 jet increased significantly when the 
Reynolds number w a s  decreased. They attributed this difference in spreading ra te  to low 
Reynolds number effects, indicating that their low Reynolds number flow was  not fully 
developed. 
(paper 2 of ref. 13). While the present resul ts  suggest a similar conclusion, the resul t  
is less  definitive here because of the close proximity of the shear layer to the model sur- 
face. Surface static-pressure measurements on the blunt body show a symmetric drop 

Low Reynolds number effects a r e  also discussed by Birch and Eggers 
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in static pressure  of 10.3 kN/m2 and 17.2 kN/m2, respectively, for 5 and 10 atm between 
the center line and near the model edge. Although this static-pressure gradient indicates 
some crossflow, its low level suggests that the three-dimensional effects are probably 
confined to the low velocity side of the shear  layer close to the blunt body. It should also 
be noted that while the shear stress levels in a radial  free jet (ref. 31) and a radial wal l  
jet (ref. 32) are approximately twice as large as the levels in the corresponding two- 
dimensional flows, there  is little change in the overall spreading rate. There is, there- 
fore, no -- a prior i  reason fo r  believing that a small  crossflow would substantially alter the 
spreading rates in the present shear  layers  if the flows of this study were fully developed. 

In the present experiments the initial thickness of the shear layer is very small  
(same order  of magnitude as the shock thickness). The apparent persistence of low 
Reynolds number effects up to at least 5 a tm in the resu l t s  given here  suggests that the 
appropriate cri terion for the length required for the flow to become fully developed 
should be a function of Reynolds number rather  than of some number of initial boundary- 
layer thicknesses. 
for subsonic shear layers. 

This  conclusion agrees  with the resul ts  found by Bradshaw (ref. 33) 

Transition Data 

The transition resul ts  for  free shear  layers  presented in figure 22 are based on 
the present study in the 11-inch tunnel and on data f rom reference 3. The latter data 
were taken in the Langley 20-inch tunnel (Mach 6) using a hemisphere-cylinder blunt 
body 5.08 c m  in diameter. Further details of the apparatus used in this study are pre-  
sented in reference 3. 
shear layer f rom the shock interaction to the point at which turbulence becomes visible 
on schlieren photographs. An average value of 1 based on a series of photographs w a s  
used to determine the transition Reynolds number 
table VI. 

The transition length used here is defined as the length along the 

NRe,T; these resu l t s  are given in 

Most of the published resu l t s  on transition in free shear layers  are based on shear 
layers  with a velocity u3 of zero  o r  close to zero. For  the present work, the velocity 
ratio ~ 3 / ~ 2  is substantial ( u 3 / ~ 2  st 0); consequently, its effects cannot be ignored. If 
these resu l t s  are to be compared with previously published data obtained for separation 
geometries where u3 = 0, it is necessary to extrapolate the measured values of N R ~ , T  
to the values they would have for a zero velocity ratio. Since the l i terature contains no 
experimental resul ts  for the variation of NRe,T with the velocity ra t io  u3/u2, it w a s  
suggested in reference 1 that, as a first approximation, the following assumption be made 

NRe ,T ,O = XNRe ,T 

. .... . . . . . . . . . . . 
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where NRe ,T ,O is the value of N R ~ , T  when u3 = 0. The quantity N R ~ , T  is defined 
as 

The lambda dependence in equation (2) is similar  to that used for  the variation of the 
shear-layer spreading rate with velocity ra t io  and is based on the assumption that the 
characterist ic velocity describing the transition process  is the velocity difference between 
the two streams. Note further that for given values of u2 - u3 and Ma, the transition 
length must increase with u2 and u3 simply because of the increase in the average 
convection velocity in the shear layer. A s  stated in reference 7, equation (2) ignores the 
dependence of N R ~ , T  on M3, a n  assumption which cannot be expected to hold when the 
velocity on both s ides  of the shear layer is supersonic. In reference 7, N R ~ , T  was  
plotted against Ma; however, in view of the resu l t s  presented in the discussion of the 

spreading rates, it is more appropriate to plot N R ~ , T  
on the velocity difference across  the shear layer as in figure 22. 

against the Mach number based 

While all the transition data in figure 22 show a s imilar  trend with Mach number, 
it should be noted that the data from reference 34 a r e  based on conditions ahead of the 
separation shock rather  than on local values, and the data from reference 35 are for 
separated axisymmetric ra ther  than planar boundary layers. From the limited resu l t s  
of references 34 and 35 on transition in separated boundary layers, Edney (ref. 1) con- 
cluded that the correlation of transition Reynolds number with Mach number given by 
Chapman, e t  al. (ref. 34) was  valid for shear layers  produced by type JII interactions. 
The resul ts  of this study do not justify this conclusion but show that predictions of length 
to transition based on this correlation can be in e r r o r  by as much as a factor of 5. 

Surface Heating 

Heat-transfer data were obtained in the 11-inch tunnel fo r  po = 5 atm and 
po = 10 atm using the phase-change coating technique (ref. 36). The 11-inch tunnel 
w a s  not equipped with an  injection system; therefore, the model was  exposed to the flow 
during the short  time the tunnel total temperature and total pressure were rising to 
steady-state values. Only data taken at t imes at least twice the length of the tunnel total- 
temperature transient were used since calculations showed that such data were relatively 
unaffected by the short  transient. (The calculated surface heat-transfer coefficient h 
varied l e s s  than 5 percent from the value for  constant total temperature for  long melt 
times.) In addition, the data reduction method of Hunt, e t  al. (ref. 37) w a s  used. Their 
method incorporates into the solution the measured total-temperature variation. The 
overall e r r o r  associated with the data reduction procedure is estimated to be no more 
than 10 to 15 percent. 
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The surface center -line heat-transfer coefficient data in the attachment region are 
shown in figure 23. 
ments f rom several  runs, the scat ter  in the data is attributed to slight variations in test 
conditions between these runs. The peak value of h is 6 percent higher at 10 a tm than 
at 5 atm with the peak occurring at an x 0.635 cm further back on the model surface 
at 10 atm. This difference is partially caused by a change in location of the shock inter-  
action produced by a difference in boundary-layer displacement thickness on the shock 
generator wedge at the lower unit Reynolds number. This changes slightly the angle of 
the impinging shock wave; hence, the interaction location. 

measured peak Stanton number hpeak/(pwU4Cp) is plotted as a function of Reynolds num- 
ber  based on shear-layer thickness at attachment ~ S L ,  (pwu46s~)/(pw sin BsL). (It 
should be noted that the Keyes-Hains (ref. 3) data shown in figure 24 have been revised by 
Keyes in an  unpublished study after a reinterpretation of photographs from the original 
tests had been made.) The density pw and the viscosity pw are based on measured 
surface temperature and measured peak static pressure.  The value BsL is the shear-  
layer angle relative to model surface inclination. The velocity u4 in the region behind 
the oblique shock usually occurs  at the attachment point. 
present study, the attachment occurred near the base of the model and no oblique shock 
resulted. Therefore, a n  approximation to u4 w a s  computed using u2 and assuming 
a n  oblique shock at the attachment point with flow parallel  to a n  extended model 'surface 
behind the shock. The Keyes-Hains data and correlation represent  shear  layers  which 
are three dimensional in nature with relatively large (27O to 420) attachment angles. 
Also shown is the correlation of Bushnell and Weinstein (ref. 38) for reattaching two- 
dimensional turbulent boundary layers. This correlation, in general, represents  data 
at relatively low attachment angles 
value of 
lations, indicating perhaps that the 10-atm flow is less influenced by three-dimensional 
effects than the 5-atm flow. 

Since the heating data for each total p ressure  represent  measure-  

These data are compared with the turbulent data of reference 3 in figure 24 where 

(See fig. 5 of ref. 3.) In the 

The data presented here  with an intermediate 

€IsL (18.60) and some three-dimensional effects fall between these two cor re-  

NUMERICAL PREDICTIONS 

Even at high Reynolds number, when transition from laminar to turbulent flow takes 
place close to the shock interaction, the shear  layer does not achieve a constant spread- 
ing rate until far downstream. It w a s  not possible to take detailed velocity-profile data 
over the initial region because of the small  width of the mixing layer there. It was,  how- 
ever,  possible to estimate the effective viscosity over this region. If the effective vis- 
cosity is assumed to be equal to the sum of the laminar and turbulent viscosities, then 
in  general, peffective can be written as 
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The function y is a streamwise "intermittency" factor introduced to simulate the varia- 
tion of the effective viscosity in the transition region. The function is 0 for  laminar flow 
and 1.0 for fully developed turbulent flow. 

Numerical calculations were made using the quasi  -parallel solution technique of 
reference 39. The Prandtl  mixing length model (see paper 4 of ref. 13) was used to  
model the turbulent viscosity; i .e., 

where 6 is the width of the mixing region and 1 / 6  is the so-called mixing-length con- 
stant. Figure 25 shows two possible y functions which were used in the calculation. 
Qualitatively these functions were chosen to be s imilar  to the variation in shear stress 
in the transition found by Bradshaw (ref. 33) for  subsonic shear  layers. In these calcu- 
lations the locations of the beginning and the end of the transition region were estimated. 

Two series of calculations were performed for conditions corresponding to the 
po = 10 atm, 11-inch tunnel case. 
experimental data for  two streamwise locations. The mixing-length constant w a s  taken 
to be Q/6  = 0.064. This value was  estimated to give a a of 16 at Mach 1.6 based on 
the mixing-length predictions for  two-dimensional free shear  layers  in paper 4 of refer- 
ence 13. The calculations were started with a profile 0.06 c m  wide since the computer 
code would not accept a s tep profile, i.e., a zero-width profile. As shown in figure 26 
with y = 1 and Q/6 = 0.064, the width of the mixing layer is underpredicted at both 
profile stations; Le., the shear layer mixes too slowly. Use  of a value of y = 0 in the 
laminar region and a value of y = 1.0 in the fully turbulent region implies that y must 
be greater  than 1.0 over much of the transition region, if the width of the mixing region 
is to be predicted correctly at the two selected locations. The resu l t s  shown in figure 26 
suggest that a variation of effective viscosity close to that given by the r b  curve of fig- 
ure 25 probably best represents  the actual variation of the effective viscosity in the transi-  
tion region. Note that this variation implies that there  is a n  initial overshoot in the effec- 
tive viscosity followed by a slow relaxation to the equilibrium value. While these resu l t s  
cannot be regarded as definitive, they are consistent with other published results.  Quali- 
tatively the resu l t s  suggest a variation in shear  stress in the transition region very simi- 
lar to that found by Bradshaw (ref. 33) for subsonic shear layers. They also offer an  
explanation for  the discrepancy between low and high Reynolds number data for super- 
sonic shear layers  reported in reference 13. 
the average effective viscosity over the transitional region is higher than the asymptotic 

The resu l t s  are shown in figure 26 together with the 

Because of the initial overshoot in viscosity, 



value. 
to achieve fully developed flow in supersonic shear layers and the absence of turbulence 
data, gave little variation in spreading rate with Mach number fo r  low Reynolds number 
flow. High Reynolds number shear  layers ,  on the other hand, show a significant decrease 
in  mixing rate with Mach number. 

This effect, compounded by an  apparent increase in the Reynolds number required 

CONCLUDING COMMENTS 

Before numerical methods for  solving the boundary -layer equations became gen- 
erally available, much effort w a s  expended in developing analytic methods for dealing 
with the nonsimilar region of a free shear  layer, where its velocity profile changed from 
a wal l  boundary-layer shape at the separation point to an  error-function shape further 
downstream. In recent yea r s  it has  become clear that this problem is only one of those 
which must be faced in attempting to predict the downstream development of a separated 
boundary layer. If the initial boundary layer is laminar, o r  if the shear  layer is genera- 
ted by a shock interaction, this developing region includes a transition from laminar to 
turbulent flow. Although the problem of predicting transition is generally ill-posed, the 
resulting practical problems are often less severe than for the corresponding problem in 
wal l  boundary layers. 
encountered in free shear flows induce turbulence a t  low Reynolds numbers and signifi- 
cant regions of laminar flow are seldom encountered in full-scale high Reynolds number 
flows. However, the shear  layer does not reach its asymptotic spreading ra te  until far 
downstream of this transition point, even in the absence of complications such as adverse 
pressure  gradients. The peak shear  stress in this transitional region can vary widely, 
and values of up to twice the asymptotic level have been measured in subsonic flows. A 
similar variation can be inferred for supersonic flows from the reported variation of 
spreading ra te  of the mixing layer with Reynolds number. 

This difference resu l t s  because the strong inflectional instabilities 

In supersonic f ree  shear  flows the problem is further complicated by an  apparent 
variation in the asymptotic spreading rate with Mach number for Mach numbers greater  
than one. At present the mechanism responsible for this effect is not wel l  understood, 
although Oh (ref. 40) has  recently proposed a possible explanation. A major problem is 
the lack of reliable experimental data, particularly turbulence data. The effect itself, 
however, has very important practical implications at high Mach numbers. Since the 
transition Reynolds number and the Reynolds number required to achieve fully developed 
flow both appear to increase with Mach number, the likelihood of significant differences 
between model-scale and full-scale data increases  a lso with Mach number. These dif- 
ferences occur since it becomes progressively more difficult to reproduce full-scale 
Reynolds numbers in  a wind tunnel as the Mach number of the flow increases. A shear  
layer which is laminar or  transitional on a wind-tunnel model at hypersonic speeds wil l  
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probably be fully developed at full scale. This fact  can lead to significant discrepancies 
between model-scale and full-scale shock interference heating data, and under some con- 
ditions the heating at full scale can be much more severe than model-scale experiments 
indicate. 

Although the resul ts  presented here  for the fully developed regions of the shear 
layer appear to be consistent with previously reported resul ts ,  and therefore, may be 
predictable, there appears to be no reliable method of predicting the developing region 
of the shear layer. This situation is unlikely to improve significantly until more and 
better data become available. For some specific recommendations the reader is 
refer red  to papers 20 and 21 of reference 13. 

SUMMARY OF RESULTS 

In the present investigation mean velocity-profile data were obtained for compress- 
ible f ree  shear layers  produced by the interaction of two unequal strength shock waves. 
Tests  were made in two wind tunnels with free-s t ream Mach numbers of 6.7 and 6.0 over 
a unit Reynolds number range of 3.77 X 106 per meter to 1.74 X l o7  per meter based on 
the flow on the high velocity side of the shear layer. The following resul ts  were obtained: 

1. The measured spreading parameters  for these shear layers  were found to be con- 
sistent with previous data when the Mach numbers for the present data are taken to be 
characterist ic Mach numbers based on the velocity difference ac ross  the shear layer. 

2. Transition Reynolds numbers were found to be a factor of 5 lower than those 
previously regarded as the most reliable data for transition in f ree  shear layers. 

3. Surface measurements in the shear-layer attachment region of the blunt-body 
model indicate peak local surface heating and surface static pressure consistent with 
other published data. 

4. Numerical predictions of the flow were made using the Prandtl mixing length 
turbulence model. A streamwise effective viscosity factor w a s  included in the transi-  
tion region to improve the prediction. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
October 21, 1975 
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TABLE I.- CENTER-LINE PROFILE DATA AT po = 0.51 MN/m2 (5 atm) 

M 11-INCH TUNNEL 

(a) To = 620 K x = 3.30 em 

22 

Y¶ 
cm 

0.0330 
.0330 
,0330 
.2622 
.286 1 
.3291 
.4150 
.5869 
.6633 
.6633 
.8018 
.8162 
.83 05 
.83 76 
.8448 
.8544 
.859 1 
.8752 
.89 26 
.8973 
.9117 
.9164 
.9403 
.9546 
.9642 
.9881 

1.0263 
1.0454 
1.1456 

u9 
m/sec 

164.5 
168.9 
190.8 
251.1 
262.1 
241.6 
266.5 
258.2 
266.5 
265.9 
449.5 
574.0 
526.0 
589.3 
5 88.0 
649.5 
595.6 
645.6 
697.5 
737.3 
728.9 
744.3 
763.7 
786.3 
788.0 
793.4 
796.4 
792.0 
796.4 

~ -__ 

M 
- 

0.334 
,343 
,389 
.518 
.542 
.497 
.552 
.533 
.552 
.550 
.987 

1.346 
1.199 
1.396 
1.391 
1.607 
1.417 
1.592 
1.798 
1.978 
1.938 
2.011 
2.109 
2.232 
2.242 
2.273 
2.290 
2.26 5 
2.290 

- 

Pt’29 
N/m2 

9 684 
9 949 
9 949 

11 010 
10 940 
10 610 
11 280 
15 780 
11 280 
11 010 
16 710 
26 270 
2 1  560 
27 190 
27 060 
35 150 
27 860 
33 830 
41 790 
50 670 
47 760 
51 070 
55 720 
63 280 
62 350 
63 940 
64 870 
65 000 
64 870 

P9 

N/m2 

8963 
9 170 
8963 
9170 
8963 
8963 
9 170 
8963 
9170 
8963 
8963 
9170 
8963 
8963 
8963 
9170 
8963 
8963 
8963 
9170 
8963 
8963 
8963 
9170 
8963 
8963 
8963 
9170 
8963 

Pt, 1’ 
N/m2 

9 684 
9 949 
9 949 

11 010 
10 940 
10 610 
11 280 
15 578 
11 280 
11 010 
16 710 
39 250 
31 490 
41 120 
28 180 
39 380 
42 360 
54 630 
51 370 
69 290 
63 690 
71 370 
83 180 

103 100 
102 400 
107 400 
110 400 
108 500 
110 400 

- 

T’ 
K 

603.2 
602.5 
598.6 
585.3 
582.5 
587.6 
581.3 
583.5 
581.3 
581.5 
516.1 
452.7 
478.9 
443.8 
444.5 
406.6 
440.0 
409.5 
374.5 
346.C 
352.2 
340.9 
326.3 

. -  

308.8 
303.3 
300.9 
300.9 
304.4 
300.9 

- 



TABLE I.- Continued 

(b) To = 623 K, x = 3.91 cm 

Y9 
cm 

0.0330 
.243 1 
.286 1 
.2909 
.3148 
.4914 
.5296 
.5726 
.6013 
.6060 
.6395 
.6610 
.6681 
.6920 
.7206 
.7254 
.7589 
.7589 
.79 23 
.79 23 
.8209 
.8209 
.a376 
.8400 
.8639 
.a687 
.a878 
.9594 

1.0048 
1.0836 
1.1695 
1.2125 

U 
m/sec 

144.2 
226.8 
207.5 
213.4 
223.1 
252.1 
257.0 
311.3 
354.4 
383.4 
419.6 
473.2 
479.6 
519.6 
577.3 
585.7 
648.6 
659.6 
674.9 
697.9 
729.6 
735.7 
741.6 
739.9 
756.9 
760.0 
772.0 
783.6 
785.1 
782.7 
784.0 
782.3 

M 

0.292 
.466 
.424 
.437 
.458 
.520 
.531 
.651 
.751 
.a21 
.910 

1.050 
1.068 
1.181 
1.357 
1.384 
1.604 
1.645 
1.705 
1.800 
1.941 
1.970 
1.998 
1.990 
2.074 
2.090 
2.153 
2.217 
2.220 
2.212 
2.219 
2.209 

- 

Pt,2’ 
N/m2 

9 949 
10 880 
10 610 
10 610 
10 750 
11 280 
11 280 
12 470 
13 530 
14 590 
15 920 
18 840 
19 230 
21 890 
27 190 
27 860 
35 820 
37 140 
39 530 
43 780 
49 750 
51 070 
52 800 
52 400 
56 110 
57 310 
60 090 
63 410 
64 340 
63 140 
64 010 
63 010 

P9 

N/m2 

9377 
9377 
9377 
9308 
9308 
9377 
9308 
9377 
9308 
9377 
9308 
9377 
9377 
9308 
9377 
9308 
9377 
9308 
9308 
9377 
9308 
9308 
9377 
9377 
9308 
9377 
9308 
9308 
9377 
9308 
9377 
9308 

Pt, 1 9  

N/m2 

9 949 
10 880 
10 610 
10 610 

11 280 
11 280 
12 470 
13 530 
14 590 
15 920 
18 840 
19 240 
22 010 
28 080 
28 950 
58 120 
42 310 
46 320 
53 860 
66 480 
69 490 
73 150 
72 210 
81 780 
84 420 
92 520 

102 200 
104 400 
101 500 
103 300 
101 000 

i o  75a 

2 
606.3 
591.1 
595.2 
594.0 
591.9 
585.0 
583.8 
568.4 
554.2 
543.5 
529.0 
505.2 
502.2 
482.2 
450.7 
445.9 
407.2 
400.1 
389.9 
374.2 
351.6 
347.2 
342.9 
344.2 
331.4 
329.1 
320.0 
311.0 
309.8 
311.7 
3 10.7 
3 12.0 

23 



TABLE I.- Continued 

(c) To = 619 K, x = 4.57 cm 

24 

Y’ 
cm 

0.0330 
.0330 
.0330 
.0330 
.1858 
.243 1 
.2766 
.3052 
.3577 
.4150 
.4771 
.5440 
.5726 
.6013 
.6347 
.6586 
.6633 
.6872 
.6968 
.7254 
.7302 
.7302 
.7350 
.7780 
.7827 
.7971 
.8066 
.8162 
.8448 
.8687 
.9499 
,9594 
.9713 

1.0167 
1.1624 

u, 
m/sec 

6 1.6 
93.6 

116.4 
125.3 
201.3 
215.6 
215.6 
221.3 
242.2 
283.2 
335.0 
487.6 
504.5 
579.2 
620.0 
626.4 
6 14.6 
684.9 
692.4 
715.4 
700.8 
721.9 
704.3 
752.1 
745.0 
752.0 
752.1 
761.3 
773.6 
773.9 
778.4 
777.7 
7 73.4 
775.4 
773.4 

~ 

M 

0.124 
.189 
.235 
.253 
.411 
.442 
.442 
.454 
.499 
.588 
,706 

1.090 
1.137 
1.363 
1.500 
1.523 
1.481 
1.746 
1.777 
1.876 
1.812 
1.905 
1.827 
2.050 
2.015 
2.050 
2.050 
2.097 
2.162 
2.163 
2.188 
2.184 
2.16 1 
2.172 
2.16 1 

Pt’2’ 
N/m2 

9 617 
9 684 
9 816 
9 949 

10 610 
10 880 
10 880 
10 88’0 
11 280 
11 940 
13 270 
19 900 
21 220 
27 590 
32 240 
33 300 
31 570 
41 790 
43 110 
47 490 
44 970 
48 820 
45 630 
55 720 
54 390 
56 110 
55 720 
58 500 
61 420 
61 950 
63 280 
62 610 
61 820 
61 950 
61 820 

P’ 
N/m2 

9515 
9446 
9446 
9515 
9446 
9515 
9515 
9446 
9515 
9446 
9515 
9446 
9515 
9446 
9446 
9515 
9446 
9446 
9446 
9446 
9515 
9446 
9515 
9446 
9515 
9515 
9446 
9515 
9446 
9515 
9515 
9446 
9515 
9446 
9515 

pt, 1’ 
N/m2 

9 617 
9 684 
9 816 
9 949 

10 610 
i o  a80 
10 880 
10 880 
11 280 
11 940 
13 270 
19 910 
21 280 
28 540 
34 670 
36 100 
33 740 
49 960 
52 390 
61 020 
55 710 
63 830 
57 010 
79 860 
76 180 
80 420 
79 860 
86 580 
95 130 
96 050 
99 880 
98 560 
95 680 
96 640 
95 680 

T, 
K 

6 14.8 
612.3 
609.9 
6 08.9 
596.5 
593.5 
593.5 
592.3 
587.5 
576.7 
560.8 
498.3 
490.0 
449.6 
425.3 
421.3 
428.6 
383.2 
3 78.0 
361.9 
3 72.2 
357.3 
369.7 
335.1 
340.1 
335.1 
335.1 
328.1 
3 18.8 
318.5 
315.0 
315.5 
318.9 
3 17.3 
3 18.9 



Y, 
c m  

0.1237 
.1763 
.3004 
.3339 
.3864 
.3959 
.4914 
.4962 
.4962 
.5726 
.5869 
.6251 
.6347 
.6347 
.6633 
.6681 
-6920 
.6920 
.7111 
.7206 
.7732 
.7732 
.8185 
.8400 
.9833 

1.0454 
1.2006 
1.3223 

u, 
m/sec  

103.2 
181.9 
208.9 
255.9 
323.0 
301.4 
470.7 
447.8 
459.6 
551.7 
578.5 
620.7 
616.5 
641.3 
655.8 
660.1 
672.5 
688.7 
693.1 
709.0 
736.1 
740.1 
750.9 
756.6 
759.1 
761.1 
758.9 
760.6 

TABLE I.- Continued 

(d) To = 611 K, x = 5.21 cm 

M 

0.208 
.370 
.427 
.528 
.678 
.629 

1.043 
.983 

1.014 
1.276 
1.361 
1.502 
1.488 
1.577 
1.631 
1.647 
1.696 
1.761 
1.780 
1.848 
1.972 
1.991 
2.044 
2.073 
2.086 
2.096 
2.084 
2.093 

Pt,29 
N/m2 

9 949 
10 610 
10 940 
11 670 
13 130 
1 2  600 
19 230 
17 910 
18 570 
25 470 
28 120 
33 030 
32 500 
35 820 
37 940 
38 600 
40 590 
43 380 
44 170 
47 230 
53 060 
53 990 
56 640 
58 100 
58 770 
59 300 
58 700 
59 160 

P, 
N/m2 

13 

~ 

Pt, 1, 
N/m2 

9 949 
10 610 
10 940 
11 670 
13 130 
12 600 
19 230 
17 910 
18 570 
37 570 
29 070 
35 550 
34 810 
39 630 
42 940 
44 010 
47 340 
52 280 
53 760 
59 690 
72 290 
74 450 
80 880 
84 580 
86 310 
87 770 
86 130 
87 350 

.- 

T, 
K 

611.4 
6 00.2 
594.9 
584.1 
564.7 
571.4 
506.4 
516.8 
511.5 
465.1 
450.0 
424.9 
427.4 
411.9 
402.6 
399.7 
391.5 
380.6 
377.5 
366.4 
346.9 
344.0 
336.0 
331.7 
329.8 
328.3 
330.0 
328.6 

25 



TABLE 1.- Concluded 

YY 
c m  

0.0330 
.0330 
.0330 
.0330 
.1237 
.1524 
.1620 
.2527 
,2718 
.2813 
.2861 
.3577 
.4198 
.4294 
.4485 
.4723 
.4819 
.5010 
.5392 
.5440 
.5583 
.5869 
.6299 
,6395 
.6490 
.7063 
.7302 
.73 26 
.7923 
.8018 
.8782 

1.0215 
1.0645 
1.1361 

u, 
m/sec 

33.7 
36.7 
62.6 
77.0 

181.9 
178.4 
181.9 
301.4 
325.1 
346.7 
360.7 
445.3 
524.4 
522.8 
532.1 
579.8 
565.6 
601.2 
623.8 
642.1 
644.1 
668.5 
704.6 
705.0 
709.1 
730.3 
743.9 
736.1 
747.7 
755.7 
754.7 
753.7 
756.7 
753.7 

(e) To = 618 K; x = 5.84 c m  

M 

0.06 8 
.073 
.126 
.155 
.370 
.363 
.370 
.629 
.683 
.733 
.766 
,976 

1.194 
1.190 
1.217 
1.365 
1.319 
1.435 
1.513 
1.579 
1.587 
1.680 
1.829 
1.830 
1.848 
1.944 
2.009 
1.972 
2.028 
2.068 
2.063 
2.058 
2.073 
2.058 

Pt, 29 
N/m2 

9 684 
9 551 
9 551 
9 816 

10 610 
10 350 
10 610 
12 600 
13 000 
13 800 
13 930 
17 780 
23 080 
22 950 
23 210 
27 860 
26 800 
30 640 
33 430 
35 150 
36 210 
39 930 
45 370 
46 430 
46 560 
51 740 
54 120 
53 060 
55 850 
57 040 
56 380 
56 110 
57 310 
56 110 

P, 
N/m2 

9653 
9515 
9446 
9653 
9653 
9446 
9653 
9653 
9515 
9653 
9446 
9653 
9653 
9653 
9446 
9515 
9653 
9653 
9653 
9446 
96 53 
96 53 
9446 
96 53 
9515 
9653 
9515 
9653 
9653 
9515 
9446 
9446 
9515 
9446 

Pt, 1, 
N/m2 

9 684 
9 551 
9 551 
9 816 

10 610 
10 350 
10 610 
12 600 
13 000 
13 800 
13 930 
17 780 
23 240 
23 090 
23 420 
28 820 
27 460 
32 290 
36 120 
38 940 
40 240 
46 210 
56 730 
58 100 
58 860 
69 270 
75 540 
72 290 
78 910 
82 780 
81 540 
80 870 
83 460 
80 870 

2 
616.1 
616.0 
614.7 
613.7 
600.2 
600.8 
600.2 
571.4 
564.1 
556.8 
551.9 
517.9 
479.8 
480.6 
475.7 
449.3 
457.4 
436.7 
423.0 
411.4 
410.1 
394.2 
369.5 
369.3 
366.4 
351.2 
341.2 
346.9 
338.3 
332.4 
333.1 
333.9 
331.6 
333.9 

26 



TABLE II.- CENTER-LINE PROFILE DATA AT p, = 1.014 MN/m2 (10 atm) 

IN 11-INCH TUNNEL 

(a) To = 619 K; x = 3.30 cm 

Y, 
cm 

0.033 
.033 
.033 
.033 
.033 
.038 
.322 
.399 
.550 
.650 
.658 
.661 
.679 
.717 
.793 
.795 
.814 
.816 
.835 
.867 
.890 
.924 
.938 
.945 
.976 
.984 

1.006 
1.023 
1.029 
1.040 
1.046 
1.055 
1.087 
1.151 
1.220 

4 
m/sec 

289.0 
271.8 
267.1 
259.5 
264.2 
267.1 
270.8 
238.7 
272.3 
272.4 
272.3 
267.9 
263.3 
269.5 
308.8 
322.4 
355.1 
368.2 
421.8 
510.4 
574.3 
631.1 
596.2 
667.5 
732.3 
735.0 
755.2 
777.7 
773.9 
782.8 
786.7 
788.3 
793.0 
797.4 
794.5 

M 

0.601 
.563 
.553 
.536 
.547 
.553 
.561 
.491 
.564 
.564 
.564 
.555 
.545 
.558 
.646 
.677 
.753 
.784 
.916 

1.154 
1.347 
1.540 
1.419 
1.676 
1.954 
1.967 
2.066 
2.185 
2.164 
2.213 
2.235 
2.244 
2.27 1 
2.297 
2.280 

Pt,2, 
N/m2 

18 570 
18 040 
17 910 
17 780 
17 910 
17 910 
18 440 
17 640 
18 570 
18 570 
18 570 
18 440 
18 310 
18 570 
19 900 
20 430 
21 890 
22 550 
25 870 
34 220 
43 120 
53 590 
46 830 
61 950 
80 920 
82 250 
89 940 
99 230 
97 500 

101 600 
103 500 
104 300 
106 100 
107 800 
106 400 

. .~ 

P, 
N/m2 

14 550 
14 550 
14 550 
14 620 
14 620 
14 550 
14 890 
14 960 
14 960 
14 960 
14 960 
14 960 
14 960 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
15 030 
14 960 
15 030 
15 030 
14 960 
14 960 
14 960 
14 960 
14 960 
14 890 
14 820 
14 820 

- 

pt, 1, 
N/m2 

18 570 
18 040 
17 910 
17 780 
17 910 
17 910 
18 440 
17 640 
18 570 
18 570 
18 570 
18 440 
18 310 
18 570 
19 900 
20 430 
21 890 
22 550 
25 870 
34 350 
44 430 
58 460 
49 120 
71 580 
10 900 
11 170 
13 030 
15 630 
15 130 
16 330 
16 900 
17 150 
17 850 
18 450 
17 970 

~ 

T, 
K 

574.9 
579.7 
581.0 
583.0 
581.7 
581.0 
580.0 
588.1 
579.6 
579.5 
579.6 
580.7 
582.0 
580.3 
569.0 
564.7 
553.7 
549.0 
527.9 
486.8 
452.3 
418.2 
439.5 
394.7 
349.5 
347.6 
332.6 
315.4 
318.3 
311.4 
308.4 
307.1 
303.4 
300.0 
302.2 

27 



Y, 
cm 

0.033 
.033 
.033 
.231 
.235 
.270 
.428 
.501 
.531 
.627 
.649 
.675 
.725 
.747 
.753 
.755 
.760 
.772 
.792 
.811 
.819 
.866 
.889 
.912 
.977 

1.029 
1.172 

u, 
m/sec 

172.8 
239.0 
188.3 
277.7 
239.0 
244.3 
259.4 
259.4 
286.3 
319.9 
305.7 
379.9 
496.2 
555.6 
546.2 
523.8 
575.9 
569.1 
627.9 
635.7 
645.0 
710.4 
739.4 
764.3 
784.7 
792.6 
791.3 

TABLE II. - Continued 

(b) To = 613 K x = 3.91 cm 

M 

0.351 
.492 
.384 
.576 
.492 
.503 
.536 
.536 
.595 
.671 
.639 
.812 

1.114 
1.289 
1.260 
1.193 
1.352 
1.331 
1.528 
1.556 
1.590 
1.855 
1.988 
2.113 
2.224 
2.269 
2.261 

Pt,2’ 
N/m2 

15 920 
17 240 
16 180 
18 310 
17 240 
17 370 
17 770 
17 770 
18 570 
19 770 
19 240 
22 550 
31 700 
39 130 
37 800 
34 890 
42 180 
41 120 
51 470 
53 060 
55 050 
71 640 
81 190 
91 130 

100 200 
103 500 
102 800 

P, 
N/m2 

14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 620 
14 550 
14 550 
14 620 
14 620 
14 550 
14 550 

Pt, 1’ 
N/m2 

15 920 
17 240 
16 180 
18 310 
17 240 
17 370 
17 770 
17 770 
18 570 
19 770 
19 240 
22 550 
31 750 
39 880 
38 350 
35 120 
43 520 
42 230 
55 910 
58 250 
61 260 
90 890 

111 800 
136 400 
162 200 
173 300 
171 200 

T, 
K 

601.6 
5 88.0 
598.8 
578.1 
588.0 
586.8 
583.0 
583.0 
575.7 
565.5 
570.0 
544.6 
493.9 
462.8 
46 8.0 
479.9 
451.4 
455.3 
420.2 
415.3 
409.4 
365.2 
344.3 
325.7 
309.9 
303.7 
3 04.8 

28 



TABLE II.- Continued 

(e )  To = 616 K; x = 4.57 em 

0.033 
.033 
.033 
.056 
.111 
.142 
.211 
.231 
.323 
.326 
.500 
.550 
.589 
.601 
.6 10 
.638 
.642 
.647 
.678 
.684 
.700 
.715 
.I25 
.I29 
.750 
.767 
. I 7 5  
.785 
.787 
.803 
.806 
.813 
.821 
.828 
.831 
.858 
.862 
.864 
.875 
.895 
.895 
.898 
.926 
.936 

1.018 
1.085 

u, 
m/sec 

189.1 
174.1 
195.9 
195.9 
223.0 
223.0 
234.0 
228.7 
234.0 
234.0 
271.7 
356.3 
447.7 
488.6 
463.8 
533.4 
532.1 
528.4 
594.1 
582.7 
623.7 
648.1 
664.2 
665.8 
700.5 
726.7 
726.7 
737.4 
748.5 
764.1 
751.6 
767.9 
779.1 
777.1 
768.9 
792.0 
783.4 
793.0 
796.1 
794.3 
799.5 
793.0 
797.2 
797.6 
796.6 
794.0 

M 

0.386 
.354 
.400 
.400 
.457 
.457 
.481 
.470 
.481 
.481 
.563 
.756 
.983 

1.093 
1.025 
1.221 
1.217 
1.207 
1.412 
1.372 
1.513 
1.602 
1.663 
1.670 
1.811 
1.928 
1.928 
1.978 
2.032 
2.112 
2.048 
2.132 
2.193 
2.187 
2.137 
2.265 
2.217 
2.271 
2.290 
2.279 
2.310 
2.271 
2.296 
2.298 
2.292 
2.277 

%,2’ 
N/m2 

17 110 
16 840 
17 240 
17 240 
17 910 
17 910 
18 170 
18 040 
18 170 
18 170 
19 240 
22 550 
28 520 
32 500 
29 980 
37 800 
37 800 
37 140 
47 090 
45 110 
52 530 
57 840 
61 690 
61 820 
70 970 
78 270 
78 270 
81 590 
85 690 
91 930 
86 890 
93 520 
98 030 
97 110 
93 520 

104 100 
100 000 
104 100 
105 700 
104 800 
107 400 
104 100 
106 800 
107 400 
107 400 
106 100 

PI 
N/m2 

15 440 
15 440 
15 440 
15 440 
15 510 
15 510 
15 510 
15 510 
15 510 
15 510 
15 510 
15 440 
15 380 
15 380 
15 380 
15 310 
15 380 
15 310 
15 240 
15 240 
15 170 
15 170 
15 170 
15 100 
15 030 
14 820 
14 820 
14 750 
14 750 
14 750 
14 750 
14 750 
14 690 
14 690 
14 690 
14 690 
14 690 
14 620 
14 620 
14 620 
14 620 
14 620 
14 690 
14 750 
14 820 
14 820 

Pt, 1’ 
N/m2 

17 110 
16 840 
17 240 
17 240 
17 910 
17 910 
18 170 
18 040 
18 170 
18 170 
19 240 
22 550 
28 520 
32 530 
29 980 
38 160 
38 150 
37 440 
49 300 
46 770 
56 760 
64 670 
70 850 
71 210 
87 870 

103 800 
103 800 
111 600 
1 2 1  400 
137 500 
124 400 
141 800 
155 200 
152 500 
142 400 
173 900 
161 200 
174 700 
179 800 
176 800 
185 600 
174 700 
182 500 
183 900 
183 100 
178 800 

~ 

T, 
K 

598.7 
601.4 
597.4 
597.4 
591.7 
591.7 
589.2 
590.4 
589.2 
589.2 
579.7 
553.3 
516.7 
497.7 
509;4 
474.9 
475.5 
477.5 
440.8 
447.5 
422.8 
407.4 
396.9 
395.8 
372.2 
353.6 
353.6 
345.8 
337.6 
325.8 
335.3 
322.9 
314.3 
315.9 
322.2 
304.2 
310.9 
303.5 
300.9 
302.4 
298.3 
303.5 
300.1 
299.8 
300.6 
302.6 
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0.033 

.211 

,403 

.477 

.568 

.577 

.586 

.591 

.609 

.646 

.659 

.673 

.696 

.714 

.723 

.737 

.838 

.856 

.883 

.947 

.993 
1.021 
1.153 

u, 
m/sec 

65.3 
125.3 
190.1 
179.7 
216.1 
228.7 
239.2 
289.1 
447.5 
436.2 
453.7 
478.7 
515.4 
565.1 
565.1 
593.0 
626.2 
652.7 
646.9 
670.4 
751.5 
762.2 
771.9 
779.5 
783.0 
782.6 
786.5 

TABLE E.- Concluded 

(d) To = 621 K x = 5.21 cm 

M 

0.132 
.253 
.388 
.366 
.443 
.470 
.492 
.602 
.982 
.953 
.998 

1.065 
1.168 
1.318 
1.318 
1.408 
1.522 
1.619 
1.598 
1.688 
2.047 
2.102 
2.154 
2.195 
2.214 
2.212 
2.234 

Pt,2 
N/m2 

16 050 
16 580 
17 510 
17 240 
17 910 
18 040 
18 310 
19 640 
28 250 
27 320 
28 790 
31 170 
35 150 
42 050 
42 050 
46 690 
53 060 
85 430 
57 570 
63 270 
88 880 
93 260 
97 500 

101 000 
102 100 
101 500 
101 500 

PY 
N/m2 

15 860 
15 860 
15 790 
15 720 
15 650 
15 510 
15 510 
15 380 
15 240 
15 240 
15 240 
15 240 
15 170 
15 170 
15 170 
15 170 
15 170 
15 170 
15 170 
15 170 
15 100 
15 100 
15 100 
15 100 
15 030 
14 960 
14 960 

Pt,l, 
N/m2 

16 050 
16 580 
17 510 
17 240 
17 910 
18 040 
18 310 
19 640 
28 250 
27 320 
28 790 
31 180 
35 310 
43 080 
43 080 
48 830 
57 520 
66 330 
64 250 
73 510 

127 200 
138 500 
150 100 
160 100 
164 300 
162 900 
165 600 

T, 
K 

614.4 
608.7 
598.5 
600.4 
593.2 
590.4 
588.0 
574.9 
516.8 
521.7 
514.0 
502.4 
484.3 
457.5 
457.5 
441.4 
421.2 
404.4 
408.1 
392.7 
335.3 
327.3 
3 19.8 
314.0 
311.3 
311.6 
308.5 

~ 
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TABLE ID.- OFF-CENTER-LINE PROFILE DATA AT po = 1.014 MN/m2 (10 atm) 

IN 11-INCH TUNNEL 

(a) Profile data 1.27 cm to the right of the center line. 
To = 617 K, x = 5.21 cm 

0.1830 
.1830 
.1830 
.2546 
.3359 
.3453 
.3837 
.3931 
.4360 
.4505 
.4695 
.4792 
.4982 
.5076 
.5 173 
.56 02 
.5699 
.6318 
.6796 
.6796 
.6 844 
.7083 
,7131 
.7418 
.7512 
.7560 
.7703 
.8086 
.8277 
.8325 
.8706 
.8754 
.885 1 
.9948 

u, 
m/sec 

130.3 
142.7 
154.5 
195.4 
231.7 
238.4 
264.8 
278.7 
342.5 
356.2 
392.3 
407.4 
421.5 
448.6 
451.8 
510.3 
522.9 
612.8 
677.6 
669.5 
673.2 
705.6 
704.2 
727.6 
733.9 
747.3 
747.3 
770.2 
774.4 
780.2 
782 .O 
784.8 
787.0 
787.9 

M 

0.264 
.289 
.314 
.399 
.476 
.490 
.548 
.578 
.723 
.755 
.842 
.879 
.915 
.985 
.993 

1.154 
1.190 
1.475 
1.716 
1.684 
1.698 
1.833 
1.827 
1.932 
1.961 
2.026 
2.026 
2.143 
2.166 
2.198 
2.208 
2.223 
2.236 
2.241 

pt, 2 
N/m2 

16 380 
16 890 
17 060 
17 410 
18 620 
18 790 
19 130 
19 990 
22 580 
23 270 
24 820 
26 370 
27 410 
29 650 
29 300 
35 510 
37 920 
52 920 
68 430 
64 810 
67 220 
76 880 
74 810 
84 460 
84 940 
92 050 
90 110 

102 000 
101 800 
106 900 
107 800 
106 900 
101 300 
101 800 

P7 
N/m2 

15 600 
15 940 
15 940 
15 600 
15 940 
15 940 
15 600 
15 940 
15 940 
15 940 
15 600 
15 940 
15 940 
15 940 
15 600 
15 600 
15 940 
15 940 
15 940 
15 600 
15 940 
15 940 
15 600 
15 940 
15 600 
15 940 
15 600 
15 940 
15 600 
15 940 
15 940 
15 600 
15 940 
15 940 

Pt7i7 
N/m2 

16 380 
16 890 
17 060 
17 410 
18 620 
18 790 
19 130 
19 990 
22 580 
23 270 
24 820 
26 370 
27 410 
29 650 
29 300 
35 630 
38 160 
56 440 
80 590 
75 150 
78 500 
96 350 
93 440 

112 200 
115 000 
129 900 
127 200 
156 000 
158 200 
169 900 
172 500 
173 100 
180 300 
181 800 

~ 

2 
6 08.2 
606.5 
604.8 
597.7 
589.9 
588.4 
581.8 
578.0 
558.3 
553.5 
540.1 
534.0 
528.2 
516.5 
515.0 
487.0 
480.5 
429.7 
388.1 
393.5 
391.1 
368.8 
369.8 
353.1 
348.5 
338.7 
338.6 
321.4 
318.1 
313.7 
312.3 
3 10.1 
308.4 
307.6 
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Y9 
cm 

0.1830 
.1830 
.1830 
,2546 
.3359 
.3453 
.3837 
.3931 
.4360 
.4505 
.4695 
.4792 
.4982 
.5076 
.5173 
.56 02 
.5699 
.6318 
.6796 
.6796 
.6 844 
.7083 
.7131 
.7418 
.7512 
.7560 
.7703 
.8086 
.8277 
.8325 
.8706 
.8754 
.8851 
.9948 

TABLE III. - Concluded 

(b) Profile data 1.27 cm to the left of the center line. 
To = 617 K; x = 5.21 cm 

u, 
m/sec 

196.0 
175.5 
184.9 
227.6 
250.9 
244.8 
301.8 
298.1 
359.5 
369.0 
416.8 
426.0 
432.5 
466.8 
475.0 
531.9 
534.2 
628.3 
690.5 
687.7 
685.4 
718.3 
721.4 
739.5 
749.4 
758.2 
761.4 
776.2 
783.8 
785.6 
787.0 
791.7 
785.6 
791.8 

M 

0.400 
.357 
.377 
.467 
.517 
.504 
.630 
.622 
.763 
.786 
.903 
.926 
.943 

1.033 
1.055 
1.217 
1.223 
1.529 
1.769 
1.757 
1.748 
1.889 
1.903 
1.988 
2.036 
2.081 
2.097 
2.176 
2.218 
2.228 
2.236 
2.263 
2.228 
2.264 

pt,29 
N/m2 

17 240 
17 410 
17 580 
17 930 
19 130 
18 960 
20 170 
20 680 
23 440 
23 960 
26 200 
27 750 
28 270 
31 370 
31 200 
37 920 
39 470 
56 190 
72 190 
69 090 
70 670 
81 150 
79 630 
88 940 
89 980 
96 660 
94 940 

104 900 
105 300 
109 600 
101 300 
109 300 
109 600 
112 900 

P9 

N/m2 

15 440 
15 940 
15 940 
15 440 
15 940 
15 940 
15 440 
15 940 
15 940 
15 940 
15 440 
15 940 
15 940 
15 940 
15 440 
15 440 
15 940 
15 940 
15 940 
15 440 
15 940 
15 940 
15 440 
15 940 
15 440 
15 940 
15 440 
15 940 
15 440 
15 940 
15 940 
15 440 
15 940 
15 940 

Pt ,P 
N/m2 

17 240 
17 410 
17 580 
17 930 
19 130 
18 960 
20 170 
20 680 
23 440 
23 960 
26 200 
27 750 
28 270 
31 370 
31 200 
38 260 
39 860 
61 060 
87 360 
83 090 
84 580 

105 100 
104 000 
122 400 
127 800 
141 500 
140 500 
164 200 
169 900 
178 200 
180 300 
182 300 
178 200 
188 300 

T, 
K 

597.5 
601.3 
599.6 
590.9 
585.3 
586.8 
571.3 
572.4 
552.3 
548.9 
530.2 
526.3 
523.6 
508.2 
504.3 
475.8 
474.6 
420.1 
379.3 
381.2 
382.8 
359.8 
357.6 
344.4 
337.1 
330.4 
328.1 
316.7 
3 10.8 
309.4 
308.4 
304.6 
309.4 
304.6 
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TABLE 1V.- CENTER-LINE PROFILE DATA AT NOMINAL p, = 10 atm 

IN 20-INCH TUNNEL 

(a) To = 463 K; po = 1.014 MN/m2 (10 atm); x = 3.43 c m  

Y’ 
c m  

0.023 
.329 
.349 
.351 
.391 
.430 
.470 
.524 
.547 
.601 
.656 
.726 
.790 
.821 
.899 
.930 

- 

u, 
m/sec 

2 16.8 
228.4 
228.8 
229.8 
233.2 
234.6 
233.7 
234.3 
239.8 
280.5 
378.5 
516.8 
627.3 
657.0 
673.2 
674.0 

M 

0.517 
.547 
.549 
.549 
.558 
.562 
.559 
.560 
.574 
.679 
.954 

1.417 
1.905 
2.082 
2.187 
2.187 

Pt’2’ 
N/m2 

30 200 
30 460 
30 200 
31  110 
30 720 
30 070 
31  620 
30 070 
30 460 
32 790 
43 800 
74 650 

126 300 
152 100 
164 300 
161 800 

P, 
N/m2 

25 170 
24 860 
24 610 
25 340 
24 860 
24 270 
25 580 
24 300 
24 370 
24 080 
24 390 
23 990 
24 400 
25 060 
24 750 
24 350 

~ 

Pt, 1’ 
N/m2 

30 200 
30 460 
30 200 
31 110 
30 720 
30 070 
31 620 
30 070 
30 460 
32 790 
43 800 
78 270 

165 000 
222 900 
259 100 
255 200 

. .  

T, 
K 

438.1 
434.2 
433.1 
435.7 
434.0 
433.8 
435.3 
435.9 
435.0 
424.8 
391.9 
330.8 
269.9 
247.9 
235.9 
236.4 
~____ 
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Y, 
cm 

0.033 
,318 
.318 
.507 
.566 
.630 
.66 1 
.690 
.702 
.726 
.769 
.811 
.845 
.947 

1.164 

TABLE IV.- Continued 

(b) To = 455 K; po = 1.02 MN/m2 (10 atm); x = 3.89 cm 

u, 
m/sec 

199.3 
215.9 
215.5 
290.7 
385.6 
491.5 
539.2 
585.3 
599.4 
621 .O 
647.4 
659.7 
661.9 
661.1 
665.3 

~ 

_. 

M 

0.477 
.518 
.518 
.714 
.986 

1.341 
1.526 
1.730 
1.794 
1.901 
2.052 
2.124 
2.138 
2.127 
2.153 

pt, 2 9  

N/m2 

30 200 
31 110 
30 850 
35 510 
48 340 
73 110 
89 060 

108 800 
116 100 
130 200 
149 300 
160 900 
160 400 
160 400 
165 400 

PS 
N/m2 

25 850 
25 900 
25 700 
25 280 
25 950 
25 680 
25 350 
24 970 
25 000 
25 310 
25 250 
25 560 
25 170 
25 400 
25 620 

Pt, 1, 
N/m2 

30 200 
31 110 
30 850 
35 510 
48 340 
75 230 
96 670 

129 000 
142 400 
169 800 
214 400 
242 600 
244 200 
242 400 
254 600 

T, 
K 

435.2 
431.9 
431.3 
412.4 
380.5 
334.6 
310.7 
284.8 
277.8 
265.7 
247.7 
240.2 
238.6 
240.4 
237.7 
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YY 
cm 

0.101 
.159 
.226 
.251 
.285 
.301 
.328 
.359 
,378 
.437 
.460 
.476 
.530 
.593 
.623 
.664 
.696 
.720 
.751 
.837 
.857 
,892 
.983 

1.035 
- .  

TABLE IV.- Continued 

(c) To = 458 K; po = 1.02 MN/m2 (10 atm); x = 4.62 cm 

u, 
m/sec 

184.7 
189.3 
194.3 
198.9 
199.4 
201.7 
209.6 
223.3 
238.8 
302.4 
338.3 
362.9 
431.1 
521.9 
558.0 
598 .O 
626.7 
638.4 
648.4 
6 54.4 
654.5 
653.7 
6 53.6 
654.1 

M 

0.43 7 
.449 
.462 
.474 
.475 
.480 
.500 
.535 
.574 
.742 
.841 
.912 

1.122 
1.449 
1.598 
1.780 
1.925 
1.989 
2.048 
2.085 
2.083 
2.080 
2.078 
2.081 

Pt, 2, 
N/m2 

30 330 
29 810 
30 200 
31 360 
31 110 
30 850 
30 980 
31 490 
32 140 
36 810 
40 170 
42 890 
58 830 
86 360 

100 300 
119 200 
135 300 
147 000 
154 400 
158 200 
157 900 
158 900 
157 800 
154 700 

P, 
N/m2 

26 590 
25 950 
26 080 
26 900 
26 650 
26 340 
26 110 
25 920 
25 710 
25 530 
25 270 
25 040 
26 870 
26 790 
26 410 
26 020 
25 690 
26 320 
26 230 
26 000 
25 990 
26 230 
26 100. 
25 520 

~ 

Pt, 1, 
N/m2 

30 3.30 
29 810 
30 200 
31 360 
31 110 
30 850 
30 980 
31 490 
32 140 
36 810 
40 170 
42 890 
58 940 
91 370 

111 900 
145 100 
179 000 
202 500 
221 000 
232 100 
231 500 
232 500 
230 500 
226 400 

- 

T, 
K 

443.8 
440.8 
439.9 
439.0 
438.7 
439.1 
437.3 
434.2 
431.0 
413.4 
402.3 
394.5 
367.7 
322.9 
303.6 
208.8 
263.8 
256.4 
249.6 
245.3 
245.7 
245.9 
246.3 
246.1 
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Y, 
c m  

0.09 1 
.134 
.229 
.275 
.343 
.408 
.468 
.502 
.503 
.534 
.549 
.604 
.648 
.682 
.722 
.819 
.882 

TABLE IV.- Concluded 

(d) To = 456 K; p, = 1.05 MN/m2 (10 atm); x = 5.31 c m  

u, 
m/sec 

173.2 
176.4 
199.3 
237.9 
321.0 
404.8 
477.1 
518.6 
52 1.6 
556.4 
569.6 
613.8 
635.7 
646.3 
651.9 
653.3 
653.4 

~ 

M 

0.411 
.418 
.474 
.573 
.795 

1.042 
1.281 
1.438 
1.452 
1.596 
1.654 
1.868 
1.978 
2.040 
2.071 
2.079 
2.079 

Pt,2 
N/m2 

30 590 
30 070 
33 570 
34 470 
40 820 
52 610 
71 560 
87 520 
87 650 

100 900 
107 500 
132 000 
152 500 
159 800 
162 900 
162 200 
160 100 

P, 
N/m2 

27 240 
26 660 
28 780 
27 600 
26 920 
26 450 
26 960 
27 490 
27 110 
26 620 
26 690 
26 460 
27 590 
27 340 
27 100 
26 790 
26 460 

Pt, 1 
N/m2 

30 590 
30 070 
33 570 
34 470 
40 820 
52 620 
72 840 
92 300 
92 810 

112 500 
122 900 
168 900 
208 600 
227 600 
237 000 
237 100 
234 000 

T, 
K 

443.2 
442.8 
440.2 
429.2 
406.0 
375.8 
345.0 
323.8 
321.5 
302.4 
295.3 
268.6 
257.1 
249.9 
246.6 
245.8 
245.9 
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TABLE V.- CENTER-LINE PROFILE DATA AT NOMINAL po = 35 atm 

IN 20-INCH TUNNEL 

(a) To = 478 K; po = 3.49 MN/m2 (35 atm); x = 4.19 cm 

Y, 
c m  

0.213 
.520 
.686 
.720 
.745 
.766 
.795 
.832 
.931 
.940 
.959 

1.015 
1.074 
1.224 

u, 
m/sec 

209.2 
234.7 
2 54.8 
285.7 
314.0 
3 52.4 
402.8 
456.6 
559.2 
622.7 
641.6 
674.8 
681.7 
682.7 

M 

0.491 
.552 
.603 
.682 
.756 
.861 

1.007 
1.177 
1.555 
1.840 
1.937 
2.122 
2.165 
2.172 

Pt,2’ 
N/m2 

99 620 
101 700 
104 800 
111 700 
119 400 
132 600 
156 000 
191 400 
296 500 
397 400 
435 500 
514 200 
533 200 
536 300 

~ 

P7 
N/m2 

84 490 
82 660 
81 930 
81 850 
81 740 
81 740 
81 760 
81 710 
81 810 
81 830 
81 800 
81 780 
81 730 
81 780 

Pt, 1 7  

N/m2 

99 620 
101 700 
104 800 
111 700 
119 400 
132 600 
156 000 
192 400 
325 300 
500 200 
580 500 
774 600 
828 000 
836 500 

T, 
K 

452.2 
450.1 
444.1 
437.1 
429.0 
417.4 
398.6 
374.4 
322.0 
284.9 
273.0 
251.6 
246.7 
246.0 
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Y¶ 
cm 

0.027 
.080 
.158 
.221 
.285 
.502 
.528 
.559 
.560 
,598 
.634 
.676 
,676 
.724 
.787 
.832 
.849 
.850 
,874 
.993 
.994 

1.055 

TABLE V.- Continued 

(b) To = 500 K; po = 3.44 MN/m2 (35 atm); x = 4.93 cm 

u, 
m/sec 

198.1 
209.1 
213.0 
216.1 
219.1 
243.6 
264.0 
312.4 
312.6 

366.8 
432.0 
503.7 

~ .- ~ 

5n8.5 
589.1 
660.1 
684.8 
687.5 
688.1 
691.0 
691.6 
691.6 
69 1.4 

M 

. 

0.451 
.478 
.487 
,494 
.501 
.560 
.610 
.734 
.734 
.880 

1.069 
1.299 
1.315 
1.622 
1.951 
2.083 
2.109 
2.110 
2.129 
2.133 
2.133 
2.130 

Pt’2’ 
N/m2 

98 330 
100 100 
99 620 
98 330 
97 560 

102 700 
106 000 
117 400 
117 400 
135 900 
169 700 
224 800 
229 300 
323 500 
448 200 
505 000 
514 500 
515 600 
522 100 
522 400 
523 000 
519 600 

P’ 
N/m2 

85  530 
85 650 
84 720 
83 230 
82 210 
82 990 
82 470 
82 070 
82 060 
82 080 
82 610 
82 990 
83 050 
83 100 
83 120 
83 140 
82 790 
82 880 
82 610 
82 360 
82 460 
82 120 

.. . . 

Pt, 1’ 
N/m2 

98 330 
100 100 
99 620 
98 330 
97 560 

102 700 
106 000 
117 400 
117 400 
135 900 
169 800 
229 500 
234 800 
364 700 
602 600 
740 400 
768 100 
770 200 
790 000 
792 700 
793 700 
786 700 

T, 
K 

480.5 
476.8 
476.9 
476.7 
476.8 
470.4 
465.9 
451.5 
451.8 
432.3 
406.4 
374.6 
372.4 
328.5 
285.0 
269.0 
264.5 
264.6 
262.3 
261.7 
261.7 
262.3 
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Y9 
cm 

0.027 
.087 
.151 
.152 
.264 
.265 
.380 
.474 
.527 
.6 16 
.656 
.668 
.696 
.748 
.782 
.818 
.920 
.985 

1.072 

TABLE V.- Concluded 

(c) To = 497 K; po = 3.44 MN/m2 (35 atm); x = 5.61 

u, 
m/sec 

177.6 
196.7 
202.0 
200.5 
215.7 
214.4 
282.9 
418.8 
512.0 
613.1 
651.0 
660.1 
675.9 
686.7 
689.2 
690.4 
690.0 
688.9 
687.9 

M 

0.402 
.447 
.460 
.455 
.495 
.490 
.661 

1.034 
1.335 
1.739 
1.922 
1.968 
2.053 
2.113 
2.127 
2.135 
2.134 
2.13 1 
2.124 

Pt,29 
N/m2 

97 560 
88 330 
97 810 
98 590 

100 900 
99 100 

116 500 
169 200 
241 400 
374 200 
446 900 
466 200 
502 700 
530 200 
539 000 
547 200 
547 200 
546 700 
544 500 

P, 
N/m2 

87 280 
85 370 
84 590 
85 530 
85 370 
84 080 
86 910 
85 940 
85 340 
85  180 
85 160 
85 120 
84 960 
85 020 
85 380 
86 110 
86 190 
86 340 
86 470 

Pt, 1 9  

N/m2 

97 560 
88 330 
97 810 
98 590 

100 900 
99 100 

116 500 
169 200 
248 200 
445 700 
590 200 
633 500 
722 400 
793 600 
814 700 
831 500 
830 900 
828 300 
821 400 

486.2 
482.0 
479.3 
482.9 
473.6 
475.7 
456.7 
408.7 
366.0 
309.6 
285.6 
280.1 
269.7 
262.9 
261.3 
260.3 
26 0.3 
260.2 
261.0 



M2 

1.79 
1.99 
2.06 
2.17 
2.22 
2.22 
2.30 

TABLE VI. - SUMMARY OF EXPERIMENTAL RESULTS 

.. 

NRe, T 
-~ 

3.0 x 104 
6.1 
5.7 
5.2 
5.6 
6.5 
4.3 

- . 

u3/u2 

0.360 
,270 
.289 
.256 
.259 
.259 
.310 

, 0.470 
.574 
.552 
.592 
.589 
.589 
.527 

NRe,T,O 

1.41 X lo4 
3.50 
3.20 
3.10 
3.30 
3.80 
2.50 

Tunnel 

11 inch 
20 inch 
20 inch 
20 inch 
20 inch 
20 inch 
11 inch 

MAV 

1.15 
1.45 
1.46 
1.61 
1.65 
1.65 
1.60 
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Bow shock 

(a) Flow field for 11-inch tUI"e1 tests. 

Figure 1.- Sketches of flow fields. 



Blunt-body model M,= 6.0 - 
Bow 'shock 

(b) Flow field for 20-inch tunnel tests. 

Figure 1. - Concluded. 



Blunt-body model 

15.2 

T O  5.08 

1 

T 
1 

r- 44.4 -_I 

7 
Shock generator wedge 

Figure 2.- Firs t  set of models. All  dimensions are in cm. 



12.7 

(a) Shock generator wedge. 

Figure 3 . -  Second set  of models. All dimensions a r e  in cm. 



t I  I 

(b) Blunt-body model. 

Figure 3. - Concluded. 

6.35 -4 

I 



Figure 4.- Second set  of models mounted in 11-inch tunnel 
tes t  section. 
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I 

0.635 (typical) 7- -4 

Figure 5. - Location of surface static-pressure orifices. 
All dimensions are in cm. 
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i 

0.127 
Static-pressure orifices 

0.051 I no I 0.076 l.oo I 

Figure 6.- Static-pressure probe (not to scale). Dimensions a r e  in cm. 



(a) 150 shock generator wedge; 
po = 10 atm. 

F igur 

, 
-\. 

(b) loo shock generator wedge; 
p = 10 atm. 0 

( c )  loo shock generator wedge; bases of wedge and model alined; 
po = 15 atm. 

L-75-239 
'e 7.- Schlieren photographs from preliminary studies in l l - inch tunnel. 
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(a) po = 2.5 atm, 11-inch tunnel. (b) p, = 5 atm, 11-inch tunnel. 

(c) po = 10 atm, 11-inch tunnel. (d) po = 4.4 atm, 11-inch tunnel. 
L-75 -240 

Figure 8.- Schlieren photographs of flow field for various unit Reynolds numbers. 
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L-75-241 

(e) po = 1.03 MN/m2, 20-inch tunnel. 

Figure 8. - Continued. 

51 



- 

L-75-242 

po = 2.10 MN/m2, 20-inch tunnel. 

Figure 8.- Continued. 
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(g) po = 3.45 MN/m2, 20-inch tunnel. 

Figure 8. - Concluded. 
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I t  I/- - - e  

x = 5.842 
x = 4.572 1 /r x =  3.302 

x = 2.642 

Figure 9. - Variation of center -line surface static pressure with angle of inclination of blunt-body model. 
po = 10 atm; l l - inch tunnel; x is given in cm. 
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Figure 10.- Variation of center-line surface static pressure with 
tunnel total pressure. M, = 6.7; 11-inch tunnel. 
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Figure 12.- Static-pressure profiles. 11-inch tunnel; po = 10 atm. 



L-75-244 
Figure 13.- Surface oil-flow pattern. po = 10 atm; 11-inch tunnel. 
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x = 3.30 cm x = 3.91 cm x = 4.57 cm x = 5.21 cm x = 5.84 cm 
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Figure 14.- Center-line mean velocity profiles. 11-inch tunnel tests. 
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(a) po = 5 atm. 
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Figure 15.- Lines of constant $. 11-inch tunnel results. Data points shown 
a r e  interpolated points. 
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(b) po = 10 atm. 

Figure 15. - Concluded. 
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Profile 1.27 cm to left of center line Center-line profile Profile 1.27 cm to right of center line 

Figure 16.- Off-center-line and center-line mean velocity profiles. x = 5.21 cm; p, = 10 atm; 11-inch tunnel. 
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Figure 17. - Center -line mean velocity profiles. 20-inch tunnel; 
nominal po = 1.03 MN/m2. 
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Figure 17. - Concluded. 
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Figure 18.- Constant q5 lines for 20-inch results. p, = 1.03 MN/m2. 
Data points shown a r e  interpolated points. 
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Figure 19.- Center-line mean velocity profiles. 20-inch tunnel; nominal po = 3.45 MN/m2. 
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Figure 20.- Constant $ lines for 20-inch results. po = 3.45 MN/m2. 
Data points shown are interpolated points. 
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Figure 21. - Comparison of present results with other experimental data. 
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Figure 22.- Variation of transition Reynolds number with Mach number. 
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Figure 23.- Center-line surface heat transfer in the attachment region. 
11-inch tunnel. 
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Figure 25. - Streamwise effective viscosity function. 
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